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1 Introduction

This report describes the design and implementation of an algorithm for estimating relative micro-
bial abundances, together with confidence limits, using data from metagenomic DNA sequencing.
For the background behind this project and a detailed discussion of our modeling approach for
metagenomic data, we refer the reader to our earlier technical report, dated March 4, 2014. Briefly,
we described a fully Bayesian generative model for paired-end sequence read data, incorporating
the effects of the relative abundances, the distribution of sequence fragment lengths, fragment posi-
tion bias, sequencing errors and variations between the sampled genomes and the nearest reference
genomes. A distinctive feature of our modeling approach is the use of a Chinese restaurant process
(CRP) to describe the selection of genomes to be sampled, and thus the relative abundances. The
CRP component is desirable for fitting abundances to reads that may map ambiguously to multiple
targets, because it naturally leads to sparse solutions that select the best representative from each
set of nearly equivalent genomes.

Since the model described in our earlier report deals comprehensively with many factors that affect
metagenomic DNA sequencing, it is necessarily very complex. For our initial fitting algorithm, we
decided to work with a greatly simplified model that focuses on the abundances only. We also began
to question whether a full Bayesian approach was needed for the fragment length, position bias and
sequencing error components of the model. The rationale for Bayesian modeling of abundances
is clear: in order to provide confidence intervals for the abundance estimates, we need to fit a
distribution rather than a point estimate. However, maximum likelihood estimates (MLEs) for the
length distribution, bias and sequence error parameters are sufficient for our purposes; they are only
used internally, so confidence intervals need not be reported. MLE estimation of these parameters
will greatly simplify the implementation effort.

2 A simplified model for generating sequence reads

To focus our efforts toward an algorithm for fitting relative abundances, we developed a simplified
generative model incorporating some additional assumptions:

1. The data consist of N single-end reads, rather than read pairs. Therefore, we are no longer
concerned with fragment length.

2. The true target sequences are all in the reference target set, so we can ignore evolution of the
target from the seed sequences.

3. We can ignore position bias when we derive the target sampling probability ⌧
t

.

4. The position bias ⇡p
t

(the probability of starting a read at position p given the target sequence
t) is based on a zero-order Markov model, rather than the more complex third-order model

1



used in eXpress.

5. For now, we ignore sequencing errors.

As in our previous model, the relative abundances ⇢
t

of the target sequences are determined by
a Chinese restaurant process. These are generated by a stick-breaking construction. We draw
breakpoints u

t

, with 0  u

t

 1, randomly from a Beta(↵

0

,�

0

) distribution, and then generate
the abundances by:

⇢

t

= u

t

Y

j<t

(1� u

j

) (1)

Under assumption (3), the probability ⌧
t

for sampling a read from target t depends only on the
relative abundance ⇢

t

, the target length l(t), and the read length l:

⌧

t

/ ⇢

t

(l(t)� l + 1) = ⇢

t

˜

l(t)

where ˜

l(t) is the effective length of t, i.e. the number of positions at which a read could be-
gin.

Under assumption (4), the position bias ⇡p
t

is derived from the probabilities �
x,b

of base b occurring
at offset x relative to the read start position p, in a 21-base window centered at p:

⇡

p

t

/
10

Y

x=�10

�

x,t[p+x]

where t[p] denotes the base at position p in target t. Both ⌧
t

and ⇡p
t

are normalized so that the
probabilities sum to 1 over targets and positions within the target, respectively.

In this simplified model, the variables t

n

and p

n

for read n, with n = 1 . . . N , are hidden. The
observed data are the read sequences r

n

. Because sequencing errors and mutations are not included
in the model, read sequence r

n

is identical to the length l segment of target t
n

beginning at position
p

n

. However, because the reference database includes sets of similar genomes from closely related
organisms, and because genomes may contain duplicated elements, a read will frequently match
multiple segments from different targets. This ambiguity makes inference of target abundances
from read alignment data a nontrivial problem.

We define y

tp

n

as the probability of observing read sequence r

n

, given that it was derived from
position p in target t: y

tp

n

= P (r

n

|t
n

= t, p

n

= p). For our simplified model where errors and
mutations are absent, ytp

n

= 1 if r
n

= t[p : p + l � 1] and 0 otherwise. Here the notation t[a : b]

refers to the subsequence of target t between positions a and b inclusive.

Figure 1 shows a graphical representation of the simplified model, showing the conditional depen-
dency relationships between the major random variables and parameters.
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Figure 1: Graphical representation of simplified generative model for metagenomic data
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3 Variational Bayes algorithm

Under the simplified model, the complete data likelihood is

L(r,p, t,u|↵
0

,�

0

,�) =

t

max

Y

t=1

P (U

t

= u

t

|↵
0

,�

0

)

N

Y

n=1

P (R

n

= r

n

|T
n

= t

n

, P

n

= p

n

)

· P (P

n

= p

n

|T
n

= t

n

,�)P (T

n

= t

n

|u)

=

t

max

Y

t=1

�(↵

0

+ �

0

)

�(↵

0

)�(�

0

)

u

↵

0

�1

t

(1� u

t

)

�

0

�1

N

Y

n=1

y

tnpn
n

⇡

pn
tn
⌧

tn

where

⌧

tn =

˜

l(t

n

) · u
tn

Q

j<tn
(1� u

j

)

P

t

max

t=1

˜

l(t) · u
t

Q

k<t

(1� u

k

)

⇡

pn
tn

=

Q

10

x=�10

�

x,tn[pn+x]

P

˜

l(tn)

q=1

Q

10

x=�10

�

x,tn[q+x]

In the above, normalization constants are included, but may be omitted in the subsequent discus-
sion. The complete data log likelihood is then:

logL(r,p, t,u|↵
0

,�

0

,�) =

t

max

X

t=1

(↵

0

� 1) log u

t

+ (�

0

� 1) log(1� u

t

)

+

N

X

n=1

8

<

:

log u

tn +

X

j<tn

log(1� u

j

) + log y

tnpn
n

+ log

˜

l(t

n

) + log ⇡

pn
tn

9

=

;

+ logZ

where Z incorporates all the normalization factors.

To derive the variational Bayes algorithm for this model, we will need to express the complete data
log likelihood in the form of an exponential family model. To do this, we want to replace indexing
over hidden and observed variables with dot products of parameters and indicator variables. We
introduce the following indicator variables:

t

t

n

⌘ 1 i↵ t

n

= t

p

p

n

⌘ 1 i↵ p

n

= p
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We then write the terms of the complete data log likelihood using indicator variables:

logL =

t

max

X

t=1

(↵

0

� 1) log u

t

+ (�

0

� 1) log(1� u

t

)

+

N

X

n=1

t

max

X

t=1

8

<

:

t

t

n

2

4

log

˜

l(t) + log u

t

+

X

j<t

(1� u

j

) +

˜

l(t)

X

p=1

p

p

n

(log y

tp

n

+ log ⇡

p

t

)

3

5

9

=

;

(2)

The goal of Bayesian inference is to estimate the posterior distribution of the parameters in the
model, given the observed data. For our purposes, the parameters of interest are the stick-breaking
proportions u

t

, which we can use to estimate the relative abundances of targets in the sample,
together with their confidence intervals. The other parameters that may be of use later are the
base frequencies �

x,b

used in the position bias model. However, we do not need to infer posterior
distributions for the �

x,b

, since point estimates are sufficient for our purposes. Maximum likelihood
estimates for the �

x,b

can be obtained easily by examining the subset of reads that map to unique
(t, p) locations, and computing the base frequencies at each offset relative to the read position p

over this read subset. Therefore, we will concern ourselves only with estimating the distributions
of u

t

.

In variational Bayes inference, we approximate the posterior distribution of the hidden variables
and parameters (which is intractable) as a product of independent distributions for each variable.
We find a set of such distributions that minimizes the KL divergence between the true and approx-
imated posteriors. In our case, the hidden variables are t

n

and p

n

for n = 1 . . . N . We write the
variational approximation to the posterior as:

q(t,p,u) =
N

Y

n=1

q

t

(t

n

)q

p

(p

n

|t
n

)

t

max

Y

t=1

q

u

(u

t

)

The notation q

t

, q
p

or q
u

for the respective probability mass or density functions is overloaded here;
these are actually different functions for the individual t

n

, p
n

and u

t

variables. Each component
distribution belongs to the same family as its counterpart in the likelihood, but has different param-
eters. Thus, t

n

and p

n

follow categorical distributions, while u

t

has a Beta distribution:

t

n

⇠ Cat(✓n) where ✓n ⌘ {✓t
n

, 1  t  t

max

}
p

n

|t
n

⇠ Cat(�ntn) where �ntn ⌘ {�p
ntn

, 1  p  ˜

l(t

n

)}
u

t

⇠ Beta(↵

t

,�

t

)

We write the distribution of p
n

as conditional on t

n

, since its range of values depends on t

n

.

The variational Bayes algorithm provides a method for inferring the set of parameters {✓n,�ntn ,↵t

,�

t

}
that minimizes the KL divergence between q(t,p,u) and the true posterior. It is an iterative pro-
cedure, similar to the EM algorithm, which alternates between the following two steps:
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VBE step: For each n 2 {1 . . . N}, set

q

(new)

tp

(t

n

, p

n

) =

1

Z

tnpn

exp {E
qu [logP (r

n

, t

n

, p

n

|u)]} (3)

where E
qu [f(u)] represents the expectation of f(u) under the distribution q

u

(u) =

Q

t

q

u

(u

t

)

from the previous VBM step, and Z

tnpn is a normalization factor.

VBM step: For each t 2 {1 . . . t
max

}, set

q

(new)

u

(u

t

) =

1

Z

ut

P (u

t

|↵
0

,�

0

) exp

(

N

X

n=1

E
qtp [logP (r

n

, t

n

, p

n

|u)]
)

(4)

where E
qtp [f(t,p)] represents the expectation of f(t,p) under the distribution q

tp

(t,p) =
Q

n

q

t

(t

n

)q

p

(p

n

|t
n

)

from the previous VBE step, P (u

t

|↵
0

,�

0

) is a prior probability density for u
t

, and Z

ut is another
normalization factor.

It can be shown [1] that, by iterating the VBE and VBM steps, the product distribution q(t,p,u)
converges to a local optimum with minimal KL divergence from the true posterior distribution.
Each step corresponds to an update rule for the parameters of the variational posterior, which we
will now derive.

For the VBE step, we rewrite the LHS of equation 3 as a product of categorical distributions:

q

(new)

tp

(t

n

, p

n

) / exp

8

<

:

t

max

X

t=1

t

t

n

log ✓

t(new)

n

+

t

max

X

t=1

˜

l(t)

X

p=1

t

t

n

p

p

n

log �

p(new)

nt

9

=

;

Plugging in the relevant terms from equation 2 gives us the following for the RHS:

q

(new)

tp

(t

n

, p

n

) / exp

8

<

:

E
qu

2

4

t

max

X

t=1

t

t

n

0

@

log

˜

l(t) + log u

t

+

X

j<t

log(1� u

j

) +

˜

l(t)

X

p=1

p

p

n

(log y

tp

n

+ log ⇡

p

t

)

1

A

3

5

9

=

;

= exp

8

<

:

t

max

X

t=1

t

t

n

0

@

log

˜

l(t) + E
qu [log ut] +

X

j<t

E
qu [log(1� u

j

)] +

˜

l(t)

X

p=1

p

p

n

(log y

tp

n

+ log ⇡

p

t

)

1

A

9

=

;

= exp

8

<

:

t

max

X

t=1

t

t

n

0

@

log

˜

l(t) +  (↵

t

)�  (↵

t

+ �

t

) +

X

j<t

[ (�

j

)�  (↵

j

+ �

j

)]

1

A

+

t

max

X

t=1

˜

l(t)

X

p=1

t

t

n

p

p

n

(log y

tp

n

+ log ⇡

p

t

)

9

=

;

(5)
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In equation 5, we use formulas for the expectations of u
t

and (1� u

t

) under a Beta(↵
t

,�

t

) distri-
bution; here  () is the digamma function. By comparing multipliers of the sufficient statistics tt

n

and t

t

n

p

p

n

, we obtain the update rules for the variational parameters ✓t(new)

n

and �p(new)

nt

:

✓

t(new)

n

/ exp

2

4

log

˜

l(t) +  (↵

t

)�  (↵

t

+ �

t

) +

X

j<t

[ (�

j

)�  (↵

j

+ �

j

)]

3

5

�

p(new)

nt

/ exp

⇥

log y

tp

n

+ log ⇡

p

t

⇤

= y

tp

n

⇡

p

t

(6)

The categorical parameters ✓t(new)

n

are constrained by the requirement that
P

t

max

t=1

✓

t(new)

n

= 1;
therefore we normalize them by dividing the terms in equation 6 by their sum. Note that q(new)

tp

(t

n

, p

n

) = 0

for any t such that ytp
n

= 0 for all p, i.e. any target that does not have an alignment from read
n. This greatly simplifies calculation of the updates, since we only need to consider targets with
alignments from each read. Note also that �p(new)

nt

does not change, once ⇡p
t

and the observed data
are given; this is because we did not include ⇡p

t

in the variational Bayes framework.

For the VBM step, we write q

(new)

u

(u

t

) as a Beta distribution:

q

(new)

u

(u

t

) / exp[(↵

t

� 1) log u

t

+ (�

t

� 1) log(1� u

t

)] (7)

To compute the RHS of equation 4, we first collect terms from equation 2 that multiply u

t

and
1� u

t

:

P (t

n

|u) /
t

max

X

t=1

8

<

:

t

t

n

2

4

log

˜

l(t) + log u

t

+

X

j<t

(1� u

j

)

3

5

9

=

;

=

t

max

X

t=1

2

4

t

t

n

(log

˜

l(t) + log u

t

) +

t

max

X

j=t+1

t

j

n

log(1� u

t

)

3

5

Substituting this expression into equation 4 yields:

q

(new)

u

(u

t

) / P (u

t

|↵
0

,�

0

) exp

8

<

:

N

X

n=1

E
qtp

2

4

t

t

n

(log

˜

l(t) + log u

t

) +

t

max

X

j=t+1

t

j

n

log(1� u

t

)

3

5

+ E
qtp

2

4

˜

l(t)

X

p=1

t

t

n

p

p

n

(log y

tp

n

+ log ⇡

p

t

)

3

5

9

=

;
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Entering the Beta prior for u
t

and rearranging expectations gives us:

q

(new)

u

(u

t

) / exp {(↵
0

� 1) log u

t

+ (�

0

� 1) log(1� u

t

)}

⇥ exp

N

X

n=1

8

<

:

E
qtp

⇥

t

t

n

⇤

(log u

t

+ log

˜

l(t)) +

t

max

X

j=t+1

E
qtp

⇥

t

j

n

⇤

log(1� u

t

)

9

=

;

⇥ exp

N

X

n=1

8

<

:

˜

l(t)

X

p=1

E
qtp

⇥

t

t

n

p

p

n

⇤

(log y

tp

n

+ log ⇡

p

t

)

9

=

;

= exp {(↵
0

� 1) log u

t

+ (�

0

� 1) log(1� u

t

)}

⇥ exp

8

<

:

N

X

n=1

✓

t(new)

n

(log u

t

+ log

˜

l(t)) +

t

max

X

j=t+1

N

X

n=1

✓

j(new)

n

log(1� u

t

)

9

=

;

⇥ exp

˜

l(t)

X

p=1

N

X

n=1

n

✓

t(new)

n

�

p(new)

nt

(log y

tp

n

+ log ⇡

p

t

)

o

=

1

Z

ut

exp

8

<

:

(↵

0

+

N

X

n=1

✓

t(new)

n

� 1) log u

t

+ (�

0

+

t

max

X

j=t+1

N

X

n=1

✓

j(new)

n

� 1) log(1� u

t

)

9

=

;

(8)

where the normalization factor 1

Zut
captures all the factors in the posterior that don’t depend on u

t

.

Here ✓t(new)

n

is the estimate of the categorical probability that read n comes from target t computed
in the previous VBE step.

Comparing coefficients of log u
t

and log(1� u

t

) between equations 7 and 8 gives us the following
update rules for the VBM step:

↵

(new)

t

= ↵

0

+

N

X

n=1

✓

t(new)

n

�

(new)

t

= �

0

+

t

max

X

j=t+1

N

X

n=1

✓

j(new)

n

(9)

The update rules defined in equations 6 and 9 are the core of the variational Bayes algorithm. To
analyze a metagenomic read data set, we perform the following steps:

1. Align the reads to a database of reference genomes using a tool such as Bowtie 2 [2].

2. Initialize the parameters ✓t
n

to assign equal probability to each target t with alignments from
read n.
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3. Use the VBM update rules (equation 9) to assign values to ↵
t

and �
t

for each target.

4. Use the VBE update rules (equation 6 to compute new values for the ✓t
n

. Normalize the
values so that

P

t

max

t=1

✓

t

n

= 1 for each read n.

5. Continue iterating the VBE and VBM updates until the ↵
t

and �
t

values converge, within
some specified tolerance.

4 Abundance and confidence limit estimation

The result of the variational Bayes iterations is a set of estimates for the (↵

t

,�

t

) parameters of
the Beta distributions describing the breakpoints u

t

. To turn these into estimates and confidence
intervals for the relative abundances ⇢

t

, we compute logarithms of both sides of equation 1:

log ⇢

t

= log u

t

+

t�1

X

j=1

log(1� u

j

)

Since the u

t

are independent draws from their respective distributions, the expectations and vari-
ances of their logs are additive. For a variable X distributed as Beta(↵,�), the expectations and
variances are as follows:

E [logX] =  (↵)�  (↵+ �)

E [log(1�X)] =  (�)�  (↵+ �)

Var (logX) =  

0
(↵)�  

0
(↵+ �)

Var (log(1�X)) =  

0
(�)�  

0
(↵+ �)

where  () and  0
() are the digamma and trigamma functions, respectively. Therefore:

E [log ⇢

t

] =  (↵

t

)�  (↵

t

+ �

t

) +

t�1

X

j=1

[ (�

j

)�  (↵

j

+ �

j

)]

Var (log ⇢

t

) =  

0
(↵

t

)�  

0
(↵

t

+ �

t

) +

t�1

X

j=1

⇥

 

0
(�

j

)�  

0
(↵

j

+ �

j

)

⇤

(10)

We can then compute the 95% confidence interval for log ⇢
t

by a normal approximation:

log ⇢

(lower)

t

= E [log ⇢

t

]� 1.96

p

Var (log ⇢

t

)

log ⇢

(upper)

t

= E [log ⇢

t

] + 1.96

p

Var (log ⇢

t

)

Note that, when these are exponentiated to form CI bounds for ⇢
t

, the bounds will be asymmetric
about the estimate exp(E [log ⇢

t

]).
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5 Implementation and testing

We implemented the variational Bayes algorithm in Python and tested it with simulated read data.
Reads were simulated by selecting genomes from the RefSeq viral database (containing 5,301 tar-
gets) according to the Chinese restaurant process described in section 2, using Beta parameters
↵

0

= 1,�

0

= 5; these parameters were chosen to create a steep dropoff of abundances with rank,
and thus a wide range of relative abundances with a small set of targets. We computed position
bias parameters by analyzing base frequencies surrounding read starts in one of the example se-
quence datasets provided with the eXpress software [3], and used these to compute read position
probabilities for each of the targets selected by the CRP. We then sampled 50-mer reads from each
selected target, distributed according to the computed probabilities. We generated data sets for
testing ranging in size from 10,000 to 1,000,000 reads. We aligned reads to the RefSeq viral DB
using Bowtie 2 and estimated abundances, using the algorithm described above.

Figure 2 shows natural logarithms of the abundances fit by the variational Bayes algorithm to a
100,000 read simulated data set, with error bars representing the 95% confidence intervals, plotted
against the input abundances used to generate the reads. The confidence intervals are wider for
targets with lower abundance, since these are represented by fewer reads. For the more abundant
targets, the estimates are very close to the true input values in almost all cases. The one exception
is the fourth most abundant target shown in Figure 2. This is a human adenovirus sequence which
is 100% identical to another adenovirus genome in RefSeq. Because there was no reason to prefer
one sequence over the other, the variational Bayes algorithm assigned equal abundances to both
targets, each being half of the true abundance. This example shows that curation of target databases
to remove duplicate sequences is essential for obtaining accurate abundance estimates.

Figure 3 shows the convergence trajectories for the targets matched by at least 1,000 reads from
the same 100,000 read data set. Trajectories drawn in red correspond to genomes not belonging to
the actual target set used to generate reads; rather, these genomes have sequences similar enough
to members of the actual target set that many reads map ambiguously to both the actual and the
near-neighbor targets. The convergence plot shows that the fitted abundances for the near-neighbor
targets decrease with successive iterations; for this particular data set, about 15 iterations are needed
to reach convergence. This is exactly the effect we hoped to achieve by using the Chinese restaurant
process model; it shows that the variational algorithm converges toward a sparse solution for the
relative abundance profile, assigning most of the reads to the best matching targets rather than
splitting them between similar targets (as happens with other metagenomic analysis tools). The
time to complete each iteration is roughly linear in the number of alignments, requiring about 1
second per 60,000 alignments.
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6 Conclusions and next steps

Here we have described our development of a simplified generative model for single-end metage-
nomic sequence read data, together with the design and implementation of a variational Bayes
algorithm to fit relative abundance parameters to data based on this model. Our initial testing
shows that the algorithm produces sparse solutions for the relative abundances of the microbial
constituents of a metagenomic sample. The next phase of this research will involve further testing
of the algorithm, using different settings for the tuning parameters, to see if the accuracy of the
fitted abundances can be improved. Once this work is completed, we will integrate the variational
Bayes algorithm with existing code in the eXpress software [3] that accounts for positional bias
and errors in the read sequence. This will result in a more accurate tool for abundance estimation
that works even when reads don’t perfectly match a genome in the reference database. The inte-
grated tool will also deal correctly with paired-end read data, which will further reduce the effect
of ambiguous read mapping. Finally, we will investigate using an online version of the variational
Bayes algorithm, to see if we can improve performance without compromising the accuracy of the
fitted abundances.
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Figure 2: Comparison of relative abundances fit by variational Bayes algorithm to input abundances
used to generate simulated data
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Figure 3: Convergence trajectories of relative abundance estimates over 20 iterations of the varia-
tional Bayes algorithm for the targets aligned by at least 1,000 of the 100,000 simulated reads
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